
WebCrow
Solving Italian crosswords using the Web

Technical Report

Giovanni Angelini Marco Ernandes Marco Gori

April 2005

Dipartimento di Ingegneria dell’Informazione,
Via Roma 56,

53100 Siena, ITALY,
[angelini|ernandes|marco]@dii.unisi.it,
Home page: http://airgroup.dii.unisi.it

1

Abstract
We designed and implemented a software system, called WebCrow, that

represents the first solver for Italian crosswords and the first system that tack-
les a language game using the Web as knowledge base. Its core feature is the
Web Search Module that produces a special form of web-based question an-
swering that we call clue-answering. This paper will focus its attention on this
task.

The web-search approach has proved itself to be very consistent: using a
limited set of documents (30 for each clue) the clue-answering process is able
to retrieve over two thirds of the correct answers. In many cases the targeted
word is given in output among the very first most probable candidates and in
nearly 15% of clues the correct answer appears in first position.

To complete the crossword solving problem the system has to fill the grid
with the best set of word answers. Currently, WebCrow performances are in-
teresting: crosswords that are “easy” for expert humans (i.e. crosswords from
the cover pages of La Settimana EnigmisticaTM) are solved, in a 15 minutes
time limit, with 80% of correct words and over 90% of correct letters. Cross-
words that are designed for experts (i.e. examples by S. & A. Bartezzaghi both
in La Settimana Enigmistica and in La Repubblica) WebCrow places correctly
two thirds of the words and around 80% of the letters.

1 Introduction
1.1 Motivations and relevant literature.
Crosswords is probably the most played language puzzle worldwide and provides a very challenging game for human
intelligence. La Settimana Enigmistica, the main Italian crossword magazine, sells over one million copies weekly. It
is estimated that over 50 million Americans solve crosswords1 with frequency.

Problems like solving crosswords from clues are reputed as AI-complete [4]. This enormous complexity is due to
its semantics and the large amount of encyclopedic knowledge required.

AI started developing an interest for crossword solving only recently. The first experience reported in the literature
is the Proverb system [2] that reached human-like performances on American crosswords using a great number of
knowledge-specific expert modules and a crossword database of great dimensions2.

We believe that recent developments in computer technology, such as the Web, search engines, information re-
trieval and machine learning techniques, can enable computers to enfold with semantics real-life concepts. With this
in mind we designed a software system, called WebCrow, whose major assumption is to attack crosswords (within
competition time limits) making use of the Web as its primary source of knowledge, being this the most extremely
rich and self-updating repository of human knowledge. This represents a different approach with respect to Proverb,
because WebCrow does not possess any knowledge-specific expert module. Nevertheless, in order to assure the sys-
tem robustness to all sorts of clues, WebCrow makes also use of a strict set of other useful modules, which includes a
dictionary and a small CrossWord DataBase3 (CWDB).

The web-based clue-answering paradigm aspires to stress the generality of WebCrow’s knowledge and its language-
independence. We will show in this paper that Web Search, thanks to the fact that in clue-answering we priorly know
the exact length of the correct answer, can produce extremely effective results providing the most important source of
knowledge for the clue-answering process.

1It has been recently observed that this sort of activity helps to prevent from developing mental decline
2Before Proverb, AI limited its analysis to the crossword generation problem [5]. This makes a closed-world assumption by requiring a

predefined dictionary of legal words and results to be an NP-complete task that can be solved in a few seconds.
3The database used by Proverb was about one order of magnitude greater than ours.

2

1.2 Problem setting and results.
Italian crosswords tend to be extremely difficult to handle because they contain a great quantity of word plays, neolo-
gisms, compound words, ambiguities and a deep involvement in socio-cultural and political topics, often treated with
irony. The latter is a phenomenon, especially present in newspapers, that introduces an additional degree of complex-
ity in crossword solving since it requires the possession of a very broad and fresh knowledge that is also robust to
volunteer language vagueness and ambiguity.

We have collected 685 examples of solved Italian crosswords, each one containing an average of 62.7 clues. These
examples were mainly obtained from two sources: the main Italian crossword magazine La Settimana Enigmistica
(due to its popularity and history, this publisher sets a probable standard for Italian crosswords) and an important
on-line newspaper’s crossword section, La Repubblica. Other examples were downloaded from crossword-dedicated
web sites. Sixty crosswords (3685 clues, avg. 61.4 each) were randomly extracted from these subsets in order to form
the experimental test suite. The remaining crosswords constituted a database (CWDB) of clue-target pairs that was
used as an aid for the generation of the candidate-answer lists.

Given this test set WebCrow’s challenge was to answer all the clues and to subsequently fill the slots with the
highest percentage of correct words. As in many human competitions a 15 minutes time limit was given for each
example.

The version of WebCrow that is discussed here is basic but it has already given very promising results. In over two
thirds of the clues the correct answer was found by the Web Search Module within the downloaded documents and in
some cases (nearly 15%) this answer was the most probable (i.e., appearing a the top of the list). The addition of the
other modules has raised the coverage to 99% and the probability of having the targeted word in first position to over
35%. Finally, solving the Constraint Satisfaction problem by filling the crossword puzzle, WebCrow averaged on the
overall test set around 70% words correct and 80% letters correct. On the examples that experts consider “easy”, as the
examples from the cover pages of La Settimana Enigmistica, WebCrow performed with 80,0% words correct (100%
in one case) and 90.1% letters correct. On more difficult examples the percentage of correct words was steadily above
60%: 67,6% with la La Settimana Enigmistica (81% letters) and 62.9% with La Repubblica (73% letters).

2 The system architecture
WebCrow is a modular-based system. Therefore, it is also possible to plug in additional ad hoc modules in order to
increase the system’s performances. A sketch of WebCrow’s architecture is given in figure 1.

The WebCrow solving process can be divided in two phases. During the first one, all the clues of a puzzle are
passed by the coordinator to all the “List Generator” modules. Each of them returns for each clue a list of possible
solutions. All lists are then merged by the “Merger”, using the confidence values of each list and the probabilities
associated to each candidate of a list. At the end of this phase, a unique list of candidate-probability pairs is generated
for each clue. Finally, WebCrow has to face a constrain-satisfaction problem. From each clue list a candidate has to
be chosen and inserted in the crossword-puzzle, trying to satisfy the intrinsic constrains. The aim of this phase is to
find an admissible solution which maximize the number of correct words inserted.

3 Using the Web for clue-answering: the Web Search Module.
The objective of the Web Search Module (WSM) is to find sensible answers to crossword clues, that are expressed
in natural language, by exploiting the Web and search engines (SE). This task recalls that of a Web-based Question
Answering system. However, with crossword clues, the nature of the problem changes sensibly, often becoming more
challenging than classic QA4. The main differences are:

• clues are mostly formulated in a non-interrogative form (i.e: ≺La voce narrante del Nome della Rosa: adso�5) making the
task of determining the answer-type more subtle.

• clues can be voluntarily ambiguous and misleading (i.e: ≺Quello liquido non attacca: scotch�6)
4The main reference for standard QA is the TREC competition [11].
5
≺The background narrator of the Name of the Rose: adso�

6
≺The liquid one does not stick: scotch�, the clue ambiguously refers to the two senses of the target: scotch-whisky and scotch-tape.

3

Coordinator

List Generators

Merger

CSP
Solver

Implicit Module

1. bla bla
2. bla bla bla bla
3. bla bla bla bla bla bla
4. bla bla
8. bla bla bla bla
11. bla bla bla bla bla bla bla
15. bla bla bla bla bla
16. bla
21. bla bla bla bla
26. bla bla
29. bla bla bla bla bla bla

1. bla
2. bla bla
3. bla bla bla
4. bla bla la bla bla bla bla
8. bla bla bla bla
11. bla bla bla bla
15. bla bla
16. bla bla bla bla bla bla bla
21. bla bla
26. bla bla
29. bla bla bla bla

r

p e r c a ls

pus lace r
f
t
l

a g i l i
i
s
a
ud

f

ci
xc e p

o
i

i
i o

i

clues

clues

crossword grid

WebSearch
Module

DataBase
Modules

Rule-based
Modules

Dictionary
Modules

List Filters

Statistical Filter

Morpho Filter

merged
candidate

lists

candidate
lists

u
r a g i l i s t

i c e x p i a l
i d o c i o u s

p e r c a ls u
i f r a g i l i s

OUTPUT

INPUT

Figure 1: WebCrow. A general overview of WebCrow’s architecture (inspired by Proverb’s).

- Query
riformulation
- Documents
retrieval with SE
- Documents
download

STATISTICAL
FILTERING

MORPHOLOGICAL
FILTERING M

E
R
G
E
R

C
O
N
F
I
D
E
N
C
E

CANDIDATE
EXTRACTION

PARSER
TEXT EXTRACTION

E
S
T
I
M
A
T
O
R

Retrieval
Filtering

Clue
List

ListText Docs

Web Docs

Clue

Web Search Module

List

Figure 2: Web Search Module. A sketch of the internal architecture of the Web Search Module.

• the topic of the questions can be both factoid7 and non-factoid (i.e: ≺Ci si va al buio: cinema�8)
• there is a unique and precise correct answer: a single word or a compound word (i.e. ≺Ha cambiato il linguaggio della tv:

ilgrandefratello�9), whereas in QA the answers are usually a 50/250-byte-passage in which the target has to be recognizable
by humans.

• the list of candidate answers requires also a global confidence score, expressing the probability that the target is within the
list.

The only evident advantage in crossword solving is that we priorly know the exact length of the words that we
are seeking. We believe that, thanks to this property, web search can be extremely effective and produce a strong
clue-answering.

7As TREC questions, like Who was the first American in space?
8
≺We go there in the darkness: cinema�

9
≺It changed the language used in television: thebigbrother�

4

Figure 3: Target in first position. The frequency of the target
in first position in relation to its length with and without the WSM.

Figure 4: Target in first 100 positions. The frequency of the
target in the first 100 positions in relation to its length with and
without the WSM.

The inner architecture of the WSM is sketched in figure 2. There are four task that have to be accomplished
by the WSM: the retrieval of useful web documents, the extraction of the answer candidates from these documents,
the scoring/filtering of the candidate lists and, finally, the estimation of the list confidence. In this section all these
components will be presented and analyzed. Despite the fact that the WSM has been implemented only in a basic version, it is
clear that this module, among the set of expert modules used by WebCrow, produces the most impressive answering performances,
with the best coverage/precision balance. This is evident if we observe tab. 3 (first two columns). In over half of cases the correct
answer is found within the first 100 candidates inside a list containing more than 105 words.

The contribution of the WSM can be appreciated in the last three rows of tab. 3 where we can observe the loss of
performance of the whole system when the WSM is removed. The overall coverage of the system is mainly guaranteed
by the dictionary module (sec. 4.4), but the introduction of the WSM is fundamental to increase sensibly the rank of
the correct answer. Also interesting is fig. 3 and fig. 4 where we take into consideration the length of the target. It
can easily be observed that the WSM guarantees the system to well perform even with long word targets, which are of
great importance in the CSP phase.

Module Coverage 1-pos 5-pos 100-pos Length
WEB (30 docs) 68.1 13.5 23.7 53.2 499
WEB (50 docs) 71.7 13.6 24.0 54.1 735
CWDB-EXACT 19.8 19.6 19.8 19.8 1.1
CWDB-
PARTIAL

29.0 10.6 20.1 28.4 45.5

CWDB-DICTIO 71.1 0.4 2.1 21.5 >10
3

RULE-BASED 10.1 6.9 8.3 10.1 12.4
DICTIONARY 97.5 0.3 1.6 21.3 >10

4

ALL BUT WEB 98.4 34.0 43.6 52.3 >10
4

ALL (30 docs) 99.3 36.5 50.4 72.1 >10
4

ALL (50 docs) 99.4 36.6 52.2 73.0 >10
4

Table 1: Module’s coverage. It is re-
ported the frequency with which the target
word can be found within the candidate list.
1-pos gives the freq. of the target in first
position, 5-pos the freq. within the first five
candidates, 100-pos within the first hundred.
Len is the avg. list length. The number
of documents used the WSM is reported in
brackets. Test Set: 60 crosswords (3685
clues).

5

As it can be seen in table 2 the coverage of the WSM’s lists grows sensibly with the first increments in the number
of retrieved documents. This growth is imperceptible after 100 docs. We found that optimal balance in the trade off
between precision, coverage and time cost is reached using 30 docs. We took this as the standard quantity of sources
to be used in the experiments because it allows WebCrow to fulfill the time limit of 15 minutes.

Table 3 gives an insight of the quality of WSM’s answers. Several examples of clues are reported along with a
small portion of the correspondent candidate list.

3.1 Retrieving useful documents
The first goal of the answering process is to retrieve the documents that are better related to the clue. This can be
done thanks to the fundamental contribution of search engine’s technology (GoogleTM was used in our testing). In
order to increase the informativeness of the search engine the clues go through a reformulation/expansion step. Each
clue C = {t1t2...tn} generates a maximum of 3 queries: Q1 =< t1 ∧ t2 ∧ ...tn >, Q2 =< t1 ∨ t2 ∨ ...tn > and
Q3 =< (t11 ∨ t21 ∨ ...) ∧ (t12 ∨ t22 ∨ ...) ∧ ...(t1n ∨ t2n ∨ ...) > where tin is the i-th derivation (i.e. changing the number,
the gender, ...) of term tn. Q3 has not been implemented yet. Non informative words are removed from the queries.

A classic QA approach is to make use only of the document snippets in order to stress time efficiency. Unfor-
tunately the properties of the clues make this approach useless (the probability of finding the correct answer to a
crossword clue within a snippet has been experimentally observed below 10%) and we decided for a full-document
approach.

The interrogation of the search engine and the download the documents represent two tasks that are extremely time
consuming, absorbing easily over 90% of time in the entire clue-answering process. Therefore we have implemented
it in a highly parallel manner: the WSM simultaneously downloads tens of documents (for one or more clues at a time)
adopting a strict time-out for each http request (20 secs.). If a request reaches the time-out then the WSM asks the
search engine for a cached copy of the document. If this is unavailable then the document is declared missed and an
additional link is requested to the SE.

For each example of our test suite we have produced a full retrieval session with a maximum of 200 docs per clue
(max. 30 docs with Q2). 615589 docs were downloaded in 44h 36min (bandwidth: 1Mb/s, effective ≈100KB/sec,
avg. 230 docs/min, 167 docs/clue, 25.6KB/doc). All the test sessions were subsequently made offline exploiting this
web image.

3.2 Extracting and ranking the candidates
The process of generating a list of candidate answers given a collection of relevant documents goes through two
important steps. First, the documents are analyzed by a parser which produces as output plain ASCII text10. Second,
this text is passed to a list generator that extracts the words of the correct length, eliminates doubles and produces an

10Currently, the parser handles only HTML scripts. We are planning to implement a PDF parser in the next future.

#docs + fil-
ters

Cover 1-pos 5-pos 100-pos Time

5+SF 46.4 11.1 19.1 41.7 1:25
10+SF 56.2 12.2 21.6 47.5 2:45
20+SF 63.7 12.3 22.1 50.3 5:30
30+SF 67.9 12.3 22.2 52.3 8:10
50+SF 71.6 12.2 22.0 53.4 13:30
100+SF 74.5 11.9 21.5 53.2 26:50
30+SF+MF 68.1* 13.5 23.7 53.2 8:45
50+SF+MF 71.7* 13.6 24.0 54.1 14:15

Table 2: WSM’s performance. The
performances of the WSM are here re-
ported. The number of documents used is
reported in brackets. SF=statistical filter,
MF=morphological filter. Time is reported
in min:secs. *The growth of the coverage is
due the NI submodule.

6

“Easy” clues “Tough” clues
≺Confina con l’Abruzzo: molise� ≺Caratteristica del burlone: giocosita�
1:molise 2:aquila 3:marche 4:umbria 1:simpatica 2:sicurezza 3:compagnia
≺Il von Klein scrittore: heinrich� ≺Documenti per minorenni: patentini�
1:heinrich 2:giovanni 3:kohlhaas 1:necessari 2:richiesti 3:organismi
≺Atomi elettrizzati: ioni� ≺Il verbo di chi ha coraggio: lanciarsi�
1:ioni 2:poli 3:essi 4:sali 5: rame 1:interiore 2:predicato 3:idealismo
≺Mal d’orecchi: otite� ≺Lasciare un segno: intaccare�
1:otite 2:ictus 3:otiti 4:edemi 5:gocce 1:passaggio 2:possibile 3:segnalare
≺Lo parlano anche in Austria: tedesco� ≺Non ha gusto in bocca: insapore�
1:inglese 2:tedesco 3:milione 4:skiroll 1:dialetto 2:prodotto 3:zucchero
≺Un film di Nanni Moretti: carodiario� ≺Larga e comoda: ampia�
1:palombella 2:portaborse 3:carodiario 1:bella 2:sella 3:barca 4:scala 5:valle
≺Il piú famoso dei Keaton: buster� ≺Sembrano ridere: iene�
1:comico 2:cinema 3:grande 4:buster 1:anni 2:loro 3:rane 4:rami 5:voci
≺Il Giuseppe pittore di Barletta: denittis� ≺Una sciagura attraente: calamita�
1:leontine 2:molfetta 3:ritratto 4:denittis 1:passione 2:alcolico 3:fardello

Table 3: Some examples. On the left: some examples of clues that are “easy” to answer for the WSM. The correct
answer is present in the very first candidates. The easiest examples are usually the clues where the topic is directly
addressed and where the answer is a factoid. On the write there is a list of “tough” clues. These are typically very
general or ambiguous and the WSM fails to place the correct answer at the head of the list. Nevertheless, all the
answers that the system produces tend to be semantically related to the target and to the clue.

unweighted candidate list. In order to increase the coverage, a list of compound words (i.e., a sequence of adjacent
words fulfilling the length requirement) is generated from each document. To avoid noisy information, compound
words which occurs only once are omitted.

Both outputs are then passed to two submodules: a statistical filter, based on IR techniques, and a morphological
filter, based on machine learning and NLP techniques. Both have been embedded in the WSM.

The candidates are ranked by merging together the information provided by the two list filters. The score-
probability associated to each word candidate w is given by

p(w,C) = c (sf -score(w,C) × mf -score(w,C)) (1)

where sf -score(w,C) is the score attributed to word w by the statistical filter, mf -score(w,C) is the score provided
by the morphological filter, c is the normalizing factor that fulfills the probability requirement

∑n

i=0 p(wn, C) = 1.
In QA systems it is important to produce very high precision only in the very first (3-5) answer candidates, since

a human user will not look further down in the list. For this reason NLP techniques are typically used to remove
those answers that are not likely correct. This answer selection policy is not well suited for clue-answering, a more
conservative approach is required because the lack of the correct answer makes a greater damage than a low precision.
The eq. 1 serves this goal: words that have low scores will appear at the bottom of the list but will not be dropped.

Our future objective is to implement a full battery of filters that can be added to the two already implement:
stylistic, morpho-syntactical, lexical and logical. We believe that a robust NLP system could be of great impact in
the answering of the clues. In addition to this we are designing a clue classifier that will enable WebCrow’s module
coordinator to understand when the web search can really be fruitful and when, conversely, this should not be triggered.

3.3 The Statistical Filtering
This submodule makes use of three types of information: a query (generated by the reformulation of a clue), a collec-
tion of ranked documents (parsed and cleaned) provided by the search engine and a list of candidate answers extracted
from the documents. We represent this information with the triple (w,Qn, Di) where w is a word of the correct length,

7

Docs

List

Statistical Filter

List

DOCUMENT
RANKING

TF
SCORING

WORD-QUERY
DISTANCE
SCORING

IDF
SCORING

Clue

Figure 5: Statistical Filter. A sketch of the internal architecture of the Statistical Filter.

Qn (n-th reformulation of clue C) is the query that is given as input to the SE and Di is the i-th document (containing
word w) provided as output by the SE. An additional element is used, rank(Di, Q

n): the document ranking. To obtain
this score we use the position of Di in the Google’s output and then compute log(1/pos(Di)). It has to be noted that
i does not strictly correspond to pos(Di) because whenever a document is missed for some reasons (non parsable
format, http errors, etc.), the systems looks further down in the list in order to maintain constant the quantity of usable
documents.

Finally, we attribute a global score to each word extracted from the documents in the following way:

sf -score(w, Q
n) =

#docs
X

i=0

„

score(w, Qn, Di)

length(Di)
rank(Di, Q

n)

«

(2)

where length(Di) is the number of words in Di. The score of a word within a single document is computed in a
TF-IDF fashion. TF has been modified in order to take into account the inner-document distance between the word
and the query. As shown in eq. 3, each occurrence of a word counts 1/dist(w,Q,Di), whereas in normal TF each
occurrence counts equally.

score(w, Q
n
, Di) = idf(w)

X

wk∈occ(w,Di)

1

dist(wk, Qn, Di)
(3)

idf(w) is the classic inverse document frequency, which provides an immediate interpretation of term specificity. For
compound words we take the highest idf value of the word components. occ(w,Di) represents the set of all the
occurrences of the word w in the document Di. The distance between the word wk and query Qn is computed as a
modified version of the square-root-mean distance between wk and each term wt,Qn of the query, suggested by [10].
The main bias of the original formula was to weight equally all the words of the query without taking into account
that some words are more informative than others. As shown in eq. 4, we decided to overcome this problem by tuning
the exponential factor of the square-root-mean distance using the idf value of wt,Qn (normalized between 1 and 3).
This increases the relevance of those answer candidates that are close to the more informative terms in the query. This
novel contribution has resulted experimentally more effective for our goals.

dist(wk, Q, Di) =

q

P#terms ∈ Q
t=0 (dist(wk, wt,Qn , Di))

idf(wt,Qn)

#terms ∈ Q (4)

dist(wk, wt,Qn , Di) denotes the distance between the word wk and word wt,Qn in document Di. In our implemen-
tation the distance between two words, within a single document, is given by the minimum number of words that
separate them. After a preliminary testing we decided to limit to 150 words the maximum word-word distance. A
default distance of 300 is assigned to those words that exceed this limit. It is legitimate to believe that outside a certain
window the semantic link between two words is unpredictable.

This distance metric could be further improved (i.e. taking into account sentences, paragraphs, titles, punctuations,
etc.) but it already provides a very informative tool.

Other improvements could be obtained using a crossword-focused idf function (the idf values used here were
obtained through a non-focused crawling session) or making use of the context in which each candidate appears.

8

Figure 6: Filtering perfor-
mances. The graphic represents the
probability of finding the correct an-
swer in relation to the number of can-
didates that are taken into consider-
ation. Looking further down in the
candidate list, the probability of re-
trieving the target answer increases.

Figure 6 shows the contribution of all the elements used within the statistical filter. In a non ranked list the probability
of finding the correct answer increases linearly with the number of candidates taken into consideration. If we rank the
candidates for their TF value the probability increases for those words that are better placed in the list. It is easy to
observe in figure 6 how the performances increase shifting from a basic filter to the full one which includes both the
statistical and morphological information.

3.4 The Morphological Filtering
The aim of this filter is to rank the candidates according to the morphological class they belong to. For this reason
we made use of a Part-of-Speech (PoS) tagger, which associates a morphological class to each word of a sentence.
Figure 7 shows the information flow of the morphological filter. The PoS tagger is used to tagged both the clue and
each document related to it. Afterwords, the clue is processed by a multiclass classifier, which returns a weighted
vector of the possible morphological classes the solution can belong to. Finally, for each word of the candidate list its
morphological score is calculated by:

mf -score(w, C) =

#tags
X

i=0

p(tagi|w)score(tagi, C) (5)

p(tagi|w) is the information provided by the PoS-Tagger, score(tagi, C) is computed using the output of the classifier
with the addition of a spread factor in order to enhance the impact of the classification.

POS
TAGGER

Clue

List

Morphological Filter

Docs

List

CLUE
TAGGING

DOCUMENTS
TAGGING

CLUE
CLASSIFIER

LIST
SCORING

Figure 7: Morphological Filter. A sketch of the internal architecture of the Morphological Filter.

9

class description class description
MS Noun or Adj. or Pron., masc. sing. AFP Article, feminine plural
FS Noun or Adj. or Pron., fem. sing. AV Adverb
MP Noun or Adj. or Pron., masc. pl. PART Particle
FP Noun or Adj. or Pron., fem. pl. NUM Number
NP Proper Noun EP Interlocutory words
VS Verb, cong. singular ABBR Abbreviation
VP Verb, cong. plural PC Compound Words
VI Verb, base form SCRIPT Script words in html doc.
VOTHER Verb, other SENT2 Punctuation, all the others
AMS Article, masculine singular SENT Punctuation a the end of a sentence
AFS Article, feminine singular OTHER all the rest
AMP Article, masculine plural

Table 4: Morphological classes. This is the full list of the morphological classes used in our PoS Tagger. It differs
from usual PoS tagging lists as the choice was to stress information relevant for finding the solution of a clue.

With the attempt to maintain a strong language-independence we chose an automatic trainable PoS tagger, called
TreeTagger [14] [15], which is an extension of a basic Markov Model tagger. The TreeTager is based on two parts: a
Lexicon and a Decision tree. Each word is first tagged using the Lexicon, which makes use also of a Prefix tree and a
Suffix tree. This two trees are binary decision trees, generated by the training examples, which infer the possible tag
of a word by examining, respectively, its beginning or ending. Finally, a binary decision tree is used. This takes into
account the tags of the k preceding words and returns a vector of the probable tags, based on the examples seen in the
training corpus. We used 23 different classes to distinguish: articles, nouns and adjectives, verbs, adverbs, particles,
interlocutory words, numbers, punctuation marks, abbreviations and others. A detailed list is given in table 3.4. At
first, the TreeTagger was trained using an automatically extracted corpus form TUT [16]. The tagger was then used
to tag a new corpus based on some CWDB’s clues and documents from the web. This new corpus was corrected and
added to the first one. Finally, the TreeTagger was retrained, obtaining an accuracy of about 93% on a cross validation
test set.

The clue classifier was built using multiclass Kernel-based Vector Machine [13] [12]. First, a training set was
created by extracting about 7000 clue-target pairs from the CWDB. Each clue was tagged by the TreeTagger and a
feature vector x̄ ∈ R

n was then automatically generated for each example. The features extracted from each clue-
answer pair were: the length of the target, the number of words in the clue, the number of capital letters in the clue, a
set of the 250 most frequent clue-words and the probability tag vector associated to each word of the clue. Finally, a
target class i ∈ {1, . . . , k} was associated to each example. We made use of 21 different target classes: almost all the
morphological ones with the addition of name initials (IP) and non-semantic words (NS). A detailed list is shown in
table 6.

Our classifier is based on a multiclass Kernel-based Vector Machine, whose aim is to learn a linear function H : X
→ Y of the type H(x̄,M) = 〈M,Φ(x̄)〉, where the predicted class is given by the function

f(x̄) = argmax
i∈{1,...,k}

Hi(x̄, M) (6)

Hi(x̄,M) = yi is the i-th entry of the vector ȳ = H(x̄,M), corresponding to the score given to the class i. The goal
is to minimize the empirical risk over all the training examples

R(f) =
X

t

∆(yt, f(x̄t)) (7)

where ∆(yt, ŷt) is the loss associated to the predicted class ŷt = f(x̄t). ∆(yt, ŷt) = 0 if yt = ŷt. Instead, ∆(yt, ŷt) =
pos loss + c

∑
j:(yj−yt)>0 (yj − yt) if yt 6= ŷt, where pos loss is the distance in positions of yt from the first value

ŷt and c is a normalization parameter.

10

Using a cross validation test over the training set described above, we obtain with a linear kernel an accuracy of
54,30% on the predicted class. The accuracy is not very high as there are many clues where it is hard, also for humans,
to determine the exact class of the solution. This ambiguity occurs mainly between the classes of these two subset:
{MS,FS,NP} and {MP,FP} 11. For the latter reason and taking into account that no candidate is pruned but just re-
weighted, we considered as a more significant value the coverage of the classifier on the first n predicted classes. As
shown in table 5, the coverage increases very rapidly and it is equivalent to 91,38% if we look over the first 5 predicted
classes. Thus, as the number of different target classes is large, this can be considered a very good result. In fact, the
use of the output of the clue classifier causes an increment in the WSM performance.

Table 6 shows the occurrence of each class in the data set, which should be similar to the one in the whole CWDB.
No re-balancing has been made, as the learning algorithm, during each loop, process the “most violated” constraint
using a cutting plane method. It can be seen also that there are several classes whose accuracy is high, such as IP, NS,
VI, NP and MP.

Moreover, the two non-morphological classes (IP and NS) were introduced in order to better exploit the morpho-
logical classifier. A submodule (NI) was implemented which generates name initials 12 when two subsequent proper
nouns are found in a sentence. The NS class, instead, is associated to all those clues where the solution does not
generally belong to the dictionary, but it can be inferred from the clue itself 13. At this moment, this type of clues
is mainly covered by the rule-based module. In future, a specific module will be implemented which will generate
appropriate solutions in a more machine learning fashion. This means by inferring likely solutions from previously
seen examples.

3.5 Estimating a confidence on the lists
After generating a candidate, each module has to estimate the probability that this list contains the correct answer.
This information is then processed by the merger, in order to correctly join the lists produced by the modules.

The confidence estimator of the Web Search Module has been implemented using a standard MLP neural network.
This was trained on a set of 2000 candidate lists, using a cross validation set of 500 examples. The main features used
for the description of a candidate list example include: the length of the query, the idf values of its words, the length
of the list and the scores of the candidates. The output target was set to 1 when the list contained the correct answer,
0 when this was absent. At the end of the training the estimator produced on the validation set an average square error
of 0,08.

11For example, in some clues is not possible to determine the gender of the solution, such as ≺Ricopre i vialetti: ghiaia, FS� (≺It can cover a
drive: gravel�) or ≺Si cambiano ad ogni portata: piatti, MP� (≺You use different ones at each course: plates�).

12E.g., ≺Iniziali di Celentano: ac, IP� (≺Name initials of Celentano: ac�). The celebrity we are talking about is Adriano Celentano, with
name initials A.C.

13E.g., ≺Trasformano la forza in norma: nm, NS� (≺they change the force in norm: nm�, it should be read ≺they change the word ’forza’ in
’norma’: nm�).

Position Coverage
1st pos 54.30%
2nd pos 73.01%
3rd pos 82.67%
4th pos 87.77%
5th pos 91.38%
6th pos 93.60%
7th pos 95.01%
8th pos 96.16%
9th pos 96.91%
10th pos 97.20%

Table 5: Coverage. Here is reported the
probability of finding the correct answer in
the first k positions.

class P of ex. acc. class P of ex. acc.
MS 24.82% 50.23% AV 1.22% 16.28%
NP 18.68% 68.17% EP 1.01% 5.00%
FS 13.68% 32.36% OTHER 0.89% 12.50%
MP 11.17% 65.12% NUM 0.81% 38.71%
NS 9.04% 84.64% AMS 0.36% 21.43%
FP 5.18% 18.99% VS 0.16% 0.00%
ABBR 3.67% 67.18% AMP 0.10% 20.00%
IP 2.86% 92.16% AFP 0.06% 33.33%
VI 2.64% 67.39% AFS 0.03% 33.33%
PC 2.33% 34.62% VP 0.01% 0.00%
PART 1.28% 25.45%

Table 6: Class accuracy. For each class it is given the percentage of examples
inside the training set and the accuracy of the classifier.

11

4 The other modules
4.1 The data-base modules
Three different DB-based modules have been implemented in order to exploit the 42973 clue-answer pairs provided by
our crossword database. As a useful comparison, the CWDB used by Proverb contained around 3.5×105 clue-answer
pairs.

CWDB-EXACT simply checks for an exact clue correspondence in the clue-entries. For each answer to a clue
C the score-probability is computed using the number of occurrences in the record C. CWDB-PARTIAL employs
MySQL’s partial-match functions, query expansion and positional term distances to compute clue-similarity scores.
The number of answer occurrences and the clue-similarity score are used to calculate the candidates probabilities.
CWDB-DICTIO simply returns the full list of words with the correct length, using the number of total occurrences
to rank the candidates. Finally, the confidence estimation of the CWDB lists is an entropy function based on the
probabilities and occurrences of the candidates.

4.2 The rule-based module
Italian crosswords often contain a limited set of answers that have no semantic relation with their clues, but that
are cryptically hidden inside the clue itself. This especially occurs in two-letter and three-letter-answers. Some of
the cryptic jokes that crossword authors apply are more or less standard. The rule-based module (RBM) has been
especially designed to handle these cases. We have defined eighteen rules for two-letter words and five rules for the
three-letter case.

For example, with a clue like ≺Ai confini del mondo: mo� 14 the RBM works as follows: pattern → ai confini;
object → mondo; rule → extract first and last letter from the object. Hence, answer → mo.

4.3 The implicit module
The goal of the implicit module is to give a score to sequences of letters. The implicit module is used in two ways:
first, within the grid-filling algorithm, to guarantee that the slots that have no candidate words left during the solving
process are filled with the most probable sequence of characters; second, as a list filter to rank the terms present in
the dictionaries. To do so we used tetra-grams. The global score of a letter sequence results by the product of all the
inner tetra-gram probabilities. Following a data-driven approach the tetra-gram probabilities were computed from the
CWDB answers.

4.4 The dictionary module
Dictionaries will never contain all the possible answers, being crosswords open to neologisms, acronyms, proper
names and colloquial expressions. Nevertheless these sources can help to increment the global coverage of the clue-
answering.

Two Italian dictionaries were used. The first one containing 127738 word lemmas, and the second one containing
296971 word forms. The output of this module is given by the list of terms with the correct length, ranked by the
implicit module.

5 Merging the candidate lists
The merger module has been implemented in a very straightforward way (a more sophisticated version will be required
in the future). The final score of each term w is computed as: p(w) = c

∑m

i=0 (pi(w) × confi) where m is the number
of modules used, confi is the confidence evaluation of module i, pi(w) is the probability score given by module i and
c is a normalizing factor.

14
≺At the edge of the world: wd�, wd is the fusion of the first and the last letter of object world.

12

6 Filling the crossword puzzle
As demonstrated by [3] crossword solving can be successfully formalized as a Probabilistic-CSP problem. In this
framework the slots of the puzzle represent the set of variables, the lists of candidates provide the domain of legal
values for the variables. The goal is to assign a word to each slot in order to maximize the similarity between the final
configuration and the target (defined by the crossword designer). This similarity can be computed in various ways. We
adopted the maximum probability function, described by the following equation.

argmax
∀sol:v1,...vn

n∏

i=1

pxi
(vi) (8)

where pxi
(vi) is the probability that the value vi is assigned to the variable xi in the target configuration.

This means that given all the possible legal solutions we search for the one that maximizes the probability of the
entire configuration.

A more efficient metric has been proposed in [3], the maximum expected overlap function15. We will include this
feature in our further work.

Finding the maximum probability solution is an NP-complete problem that can be faced using heuristic search
techniques as A∗. In our implementation the path cost function is the product of the probabilities of the already
assigned variables and the heuristic function is the product of the best remaining values of the unassigned variable.
Taking the negative log probability, as in eq. 9 and 10, we transform the grid filling into a minimization problem that
can be attacked using the classic A∗ cost function f(X) = g(X) + h(X). Given d the number of already assigned
variables in X , q the number of unassigned variables, #Dj the number of legal values for each unassigned variable
xj and vk

j) the k-th legal value for xj , we have the following:

g(X) =

d
X

i=1

− log(pxi(vi)) (9)

h(X) =

q
X

j=1

− log(
#Djargmax
k=1

(pxj (v
k
j)) (10)

Due to the competition time restrictions and to the complexity of the problem the use of standard A∗

was discarded. For this reason we adopted as a solving algorithm a CSP version of WA∗ [6]. Our new cost
function is given by:

f(X) = γ(d)(g(X) + wh(X)) (11)

w is the weighting constant that makes A∗ more greedy, as in the classic definition of WA∗, and γ(d) represents
an additional score, based on the number of assigned values d (the depth of the current node), that makes
the algorithm more depth-first, which is preferable in a CSP framework. This depth score increases the
speed of the grid-filling, but it also causes f(X) to be non-admissible.

The grid-filling module works together with the implicit module in order to overcome the missing of a
word within the candidates list. Whenever a variable xi remains with no available values then a heuristic
score is computed by taking the tetra-gram probability of the pattern present in xi. The same technique
is used when a slot is indirectly filled (by the insertion of a crossing word) with a term that is not present
within the initial candidates list.

To produce a fast node consistency computation, whenever a variable is selected for expansion, we
calculate the remaining legal words using the pointer technique proposed in [5].

7 Experimental results

15The aim here is to maximize the number of words that coincide with the target, and not the overall probability

13

Figure 8: The coverage of
the WSM in relation to the
number of documents used.
The WSM can increase its cov-
erage by using more documents
for each clue. This sensibly
slows the answering process.

The whole crossword collection has been partitioned in five subsets. The first two belong to La Settimana
Enigmistica, S1

ord containing examples of ordinary difficulty (mainly taken from the cover pages of the mag-
azine) and S1

dif composed by crosswords especially designed for skilled cruciverbalists. An other couple

belong to La Repubblica, S2
new and S2

old respectively containing crosswords that were published in 2004 and
in 2001-2003. Finally, S3 is a miscellaneous of examples from crossword-specialized web sites.

Sixty crosswords of the test set (3685 clues, avg. 61.4 each) were randomly extracted from these subsets
in order to form the experimental test suite: T 1

ord (15 examples), T 1
dif (10 exs.), T 2

new (15 exs.), T 2
old (10 exs.)

and T 3 (10 exs.). Some statistics about the test set are shown in table 7.
To securely maintain WebCrow within the 15 minutes time limit we decided to gather a maximum of

30 documents per clue. To download the documents, parse them and compute the statistical filtering an
average of 8 minutes are required. An additional 35 secs are needed by the morphological filter. Thus, in less
than 9 minutes WSM’s work is completed. The other modules are much faster and the global list generation
phase can be terminated in less than 10 minutes. To fulfill the competition requirements we limited the
grid-filling execution time to 5 minutes. If a complete solution is not found within this time limit the best
partial assignment is returned.

The results16 that we obtained manifested the different difficulty inherent in the five subsets. Figure 8
reports WebCrow’s performance on each example. On T 1

ord the results were quite impressive: the average
number of targets in first position was just above 40% and the CSP module raised this to 80.0%, with 90.1%
correct letters. In one occasion WebCrow perfectly completed the grid. With T 1

dif WebCrow was able to fill
correctly 67.6% of the slots and 81.2% of the letters (98.6% in one case) which is more or less the result of a
beginner human player. On T 2

new WebCrow performs with less accuracy averaging 62.9% (72% letters). On
T 2

old (old crosswords), due to the constant refreshing of Web’s information, the average number of correct

16WebCrow has been implemented mainly in Java with some parts in C++ and Perl. The system has been compiled and tested using Linux on a
Pentium IV 2GHz with 2GB ram.

T 1
ord T 1

dif T 2
new T 2

old T 3

Letters 160.7 229.5 156.6 141.1 168.5
Blanks 69.4 37.5 29.8 31.3 37.8
Clues 59.7 79.5 59.5 61.4 50.5
Avg. Length 4.99 5.53 5.04 4.96 4.61
Target in 1-pos 40.3% 37.3% 37.3% 33.3% 31.2%

Table 7: Statistics of the test subsets.
T 1

ord
is the subset of “easy” crosswords with

short answers, high number of blanks, lim-
ited number of clues. T 1

dif
provides a tough

challenge, having a high number of clues
and long answers. T 2

new and T 2
old

are ex-
tremely difficult because they contain a great
quantity of socio-political references. T 3 is
a miscellaneous of average difficulty.

14

Figure 9: WebCrow’s performance on the five subsets. The average and the variance of the correct words are also
reported.

words goes down to 61.3% (72.9% letters). The last subset, T 3, contains crosswords that belong to completely
different sources, for this reason the contribution of the CWDB is minimal (the coverage and the precision
of CWDB-EXACT are more than halved). Nevertheless, the WSM still assures a good clue-answering and
the solving module is able to reach 69.1% words correct and 82.1% letters correct.

Altogether, WebCrow’s performance over the test set is of 68.8% (ranging from 36.5% to 100%) correct
words and 79.9% (ranging from 48.7% to 100%)correct letters.

From preliminary tests we observed that allowing an extended time limit of 45 minutes and using more
documents from the Web (i.e. 50 per clue) the system’s performances increase by a 7% in average.

8 Conclusions
The version of WebCrow that is discussed here is basic but it has already given very promising results.
WebCrow’s overall architecture allows to plug in several expert modules in order to increase the system’s
performances. The web-search approach has proved to be very consistent. We believe it could suite all those
problems in which semantics and interpretation play an important role

In our future work we believe that a robust NLP system could be of great impact in the answering of
the clues. This can be done by adding several other list filters: stylistic, morpho-syntactical, lexical and
logical. Moreover, we will improve the grid-filling algorithm. Thanks to its modular design and to the
promising results of the current implementation we believe that WebCrow can become a consistent Italian
and multilingual crossword solver.

9 Acknowledges
We are extremely thankful to the scientific magazine Nature that confirmed the significance of the topic and manifested

a great interest on WebCrow [9]. We thank to GoogleTM for its fundamental support and to Michael Littman that

gave us precious suggestions. We also thank Guido Bartoli and Giovanni Canessa for their aid.

15

References
[1] Michael L. Littman, Greg A. Keim and Noam M. Shazeer: A probabilistic approach to solving crossword

puzzles. Journal of Artificial Intelligence. 134 (2002) 23–55

[2] Greg A. Keim, Noam M. Shazeer and Michael L. Littman: PROVERB: the probabilistic cruciverbalist.
AAAI ’99: Proceedings of the sixteenth national conference on Artificial Intelligence. (1999) 710–717

[3] Noam M. Shazeer, Greg A. Keim and Michael L. Littman: Solving crosswords as probabilistic contraint
satisfaction. AAAI ’99: Proceedings of the sixteenth national conference on Artificial Intelligence. (1999)
156–152

[4] Michael L. Littman: Review: computer language games. Journal of Computer and Games. 134 (2000)
396–404

[5] M. L. Ginsberg, M. Frank, M. P. Halping and M.C. Torrance: Search lessons learned from crossword
puzzles. Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI–90). (1990)
210–215

[6] I. Pohl: Heuristic search viewed as path finding in a graph. Journal of Artificial Intelligence. 1 (1970)
193–204

[7] L. J. Mazlack: Computer construction of crossword puzzles using precedence relationships. Journal of
Artificial Intelligence 7 (1976) 1–19

[8] Matthew L. Ginsberg: Dynamic Backtracking. Journal of Artificial Intelligence Research. 1 (1993) 25–46

[9] News–Nature: Program crosses web to fill in puzzling words. Nature 431 (2004) 620

[10] Cody Kwok, Oren Etzioni and Daniel S. Weld: Scaling question answering to the web. ACM Trans. Inf.
Syst. 19,3 (2001) 242–262

[11] Ellen M. Voorhees and Dawn M. Tice: Overview of the TREC–9 Question Answering Track. Proceedings
of the Ninth Text REtrieval Conference (TREC–9). (2000)

[12] Koby Crammer and Yoram Singer: On the algorithmic implementation of multiclass kernel–based vector
machines. Journal of Machine Learning Res. 2 (2002) 265—-292

[13] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims and Yasemin Altun: Support vector
machine learning for interdependent and structured output spaces. ICML ’04: Twenty–first international
conference on Machine learning (2004)

[14] Helmut Schmid: Probabilistic Part–of–Speech Tagging Using Decision Trees. International Conference
on New Methods in Language Processing. (1994)

[15] H. Schmid: Improvements in Part-of-speech Tagging with an Application to German. Proceedings of
the EACL SIGDAT Workshop. (1995)

[16] C. Bosco, V. Lombardo and D. Vassallo and L. Lesmo: Building a Treebank for Italian: a Data–driven
Annotation Schema. Proceedings of LREC. (2002)

16

