
Solving Italian Crosswords Using the Web

Giovanni Angelini, Marco Ernandes, and Marco Gori

Dipartimento di Ingegneria dell’Informazione,
Via Roma 56, 53100 Siena, ITALY,

[angelini|ernandes|marco]@dii.unisi.it,
WWW home page: http://airgroup.dii.unisi.it

Abstract. We designed and implemented a software system, called WebCrow,
that represents the first solver for Italian crosswords and the first system that tack-
les a language game using the Web as knowledge base. Its core feature is the Web
Search Module that produces a special form of web-based question answering
that we call clue-answering. This paper will focus its attention on this task.
The web-search approach has proved itself to be very consistent: using a limited
set of documents the clue-answering process is able to retrieve over two thirds of
the correct answers. In many cases the targeted word is given in output among
the very first most probable candidates (15% of correct answers in first position).
To complete the crosswords solving problem the system has to fill the grid with
the best set of word answers. Currently, WebCrow’s performances are interesting:
crosswords that are “easy” for expert humans (i.e. crosswords from the cover
pages of La Settimana EnigmisticaTM) are solved, in a 15 minutes time limit,
with 80% of correct words and over 90% of correct letters. With crosswords that
are designed for experts, WebCrow places correctly two thirds of the words and
around 80% of the letters.

1 Introduction
Motivations and Relevant Literature. Crosswords are puzzles that engage millions
of people everyday in a very challenging game for human intelligence. This problem is
reputed as AI-complete [4]. The complexity is due to its semantics and the large amount
of encyclopedic knowledge required. AI developed an interest for crosswords solving
only recently. The first experience reported in the literature is the Proverb system [2]
that reached human-like performances on American crosswords using a great number
of knowledge-specific expert modules and a crosswords database of great dimensions1.

We believe that recent developments in computer technology, such as the Web,
search engines, information retrieval and machine learning techniques, can enable com-
puters to enfold with semantics real-life concepts. With this in mind we designed a soft-
ware system, called WebCrow, whose major assumption is to attack crosswords making
use of the Web as its primary source of knowledge, being this the most extremely rich
and self-updating repository of human knowledge. With respect to Proverb WebCrow
does not possess any knowledge-specific expert module, but only a limited set of useful
modules which includes a dictionary and a small database2.

1 Before Proverb, AI limited its analysis to the crossword puzzles generation problem [5]. This
makes a closed-world assumption by requiring a predefined dictionary of legal words and
results to be an NP-complete task that can be solved now in a few seconds.

2 The database used by Proverb was about one order of magnitude greater than ours.

2

Coordinator

List Generators

Merger

CSP
Solver

Implicit Module

1. bla bla
2. bla bla bla bla
3. bla bla bla bla bla bla
4. bla bla
8. bla bla bla bla
11. bla bla bla bla bla bla bla
15. bla bla bla bla bla
16. bla
21. bla bla bla bla
26. bla bla
29. bla bla bla bla bla bla

1. bla
2. bla bla
3. bla bla bla
4. bla bla la bla bla bla bla
8. bla bla bla bla
11. bla bla bla bla
15. bla bla
16. bla bla bla bla bla bla bla
21. bla bla
26. bla bla
29. bla bla bla bla

r

p e r c a ls

pus lace r
f
t
l

a g i l i
i
s
a
ud

f

ci
xc e p

o
i

i
i o

i

clues

clues

crossword grid

WebSearch
Module

DataBase
Modules

Rule-based
Modules

Dictionary
Modules

List Filters

Statistical Filter

Morpho Filter

merged
candidate

lists

candidate
lists

u
r a g i l i s t

i c e x p i a l
i d o c i o u s

p e r c a ls u
i f r a g i l i s

OUTPUT

INPUT

Fig. 1. WebCrow. A general overview of WebCrow’s architecture.
The web-based clue-answering paradigm aspires to stress the generality of We-

bCrow’s knowledge and its language-independence. We will show in this paper that
web search can produce extremely effective results providing the most important source
of knowledge for the clue-answering process.

Problem Setting and Results. Italian crosswords tend to be extremely difficult to
handle because they contain a great quantity of word plays, neologisms, compound
words, ambiguities and a deep involvement in socio-cultural and political topics, often
treated with irony. Hence, the system requires the possession of a very broad and fresh
knowledge that is also robust to volunteer language vagueness and ambiguity.

We have collected a dataset of 685 solved Italian crosswords. These examples were
mainly obtained from two sources: the main Italian crosswords magazine La Settimana
Enigmistica (this publisher sets, as matter of fact, a standard for Italian crosswords) and
an important on-line newspaper’s crosswords section, La Repubblica.

Given a test set of 60 crosswords, WebCrow’s challenge was to answer all the clues
and to subsequently fill the slots with the highest percentage of correct words. As in
many human competitions a 15 minutes time limit was given for each example.

The version of WebCrow that is discussed here is basic but it has already given very
promising results. In over two thirds of the clues the correct answer was found by the
Web Search Module and in nearly 15% this answer was the top of the list. The addition
of the other modules has raised the coverage to 99% and the probability of having the
targeted word in first position to over 35%. Finally, filling the puzzle WebCrow averaged
on the overall test set around 70% words correct and 80% letters correct.

2 The System Architecture
WebCrow is a modular-based system (fig. 1). Therefore, it is also possible to plug in
additional ad hoc modules in order to increase the system’s performances.

The WebCrow solving process can be divided in two phases. During the first one, all
the clues of a puzzle are passed by the coordinator to all the “List Generator” modules.
Each of them returns for each clue a list of possible solutions. Afterwards the candidate
lists are merged into a unique list for each clue.

Finally, WebCrow has to face a constrain-satisfaction problem. From each clue list
a candidate has to be chosen and inserted in the crossword-puzzle, trying to satisfy

3

- Query
riformulation
- Documents
retrieval with SE
- Documents
download

STATISTICAL
FILTERING

MORPHOLOGICAL
FILTERING M

E
R
G
E
R

C
O
N
F
I
D
E
N
C
E

CANDIDATE
EXTRACTION

PARSER
TEXT EXTRACTION

E
S
T
I
M
A
T
O
R

Retrieval
Filtering

Clue
List

ListText Docs

Web Docs

Clue

Web Search Module

List

Fig. 2. Web Search Module. A sketch of the internal architecture of the Web Search Module.
the intrinsic constrains. The aim of this phase is to find an admissible solution which
maximize the number of correct words inserted.

3 Using the Web for Clue-Answering: the Web Search Module.
The objective of the Web Search Module (WSM) is to find sensible answers to cross-
word clues, that are expressed in natural language, by exploiting the Web and search
engines (SE). This task recalls that of a Web-based Question Answering system. How-
ever, with crossword clues, the nature of the problem changes sensibly, often becoming
more challenging than classic QA [9]. The main differences are:

– clues are mostly formulated in a non-interrogative form
– clues can be voluntarily ambiguous and misleading
– the topic of the questions are not limited to factoids.
– there is a unique and precise answer which is a word or a compound word. Instead, in QA

the answer is sequence of words in which the target has to be recognizable by humans.
The only evident advantage in crosswords solving is that we priory know the exact

length of the words that we are seeking. We believe that, thanks to this property, web
search can be extremely effective and produce a strong clue-answering.

The inner architecture of the WSM is sketched in figure 2. There are four task
that have to be accomplished by the WSM: the retrieval of useful web documents, the
extraction of the answer candidates from these documents, the scoring/filtering of the
candidate lists and, finally, the estimation of the list confidence. In this section all these
components will be presented and analysed.

Although the WSM has been implemented only in a basic version, it is clear that
this module, among the set of expert modules used by WebCrow, produces the most

Table 1. Modules coverage. Cov reports the frequency with which the target word can be found
within the candidate list. n-pos (n = 1, 5, 100) gives the frequency within the first n candidates.
Len is the average list length. ALL(30 docs) was used in the final tests.

Module Cov 1-pos 5-pos 100-pos Len
WEB (30 docs) 68.1 13.5 23.7 53.2 499
CWDB-EXACT 19.8 19.6 19.8 19.8 1.1
CWDB-PARTIAL 29.0 10.6 20.1 28.4 45.5
CWDB-DICTIO 71.1 0.4 2.1 21.5 >103

RULE-BASED 10.1 6.9 8.3 10.1 12.4
DICTIONARY 97.5 0.3 1.6 21.3 >104

ALL BUT WEB 98.4 34.0 43.6 52.3 >104

ALL (30 docs) 99.3 36.5 50.4 72.1 >10
4

4

Fig. 3. Target in first position. The fre-
quency of the target in first position in relation
to its length with and without the WSM.

Fig. 4. Target in first 100 positions. The fre-
quency of the target in the first 100 positions in
relation to its length with and without the WSM.

impressive answering performances, with the best coverage/precision balance. This is
evident if we observe tab. 1 (first two columns). In over half of cases the correct answer
is found within the first 100 candidates inside a list containing more than 105 words.

The contribution of the WSM can be appreciated in the last two rows of tab. 1
where we can observe the loss of performance of the whole system when the WSM is
removed. The overall coverage of the system is mainly guaranteed by the dictionary
module (sec. 4), but the introduction of the WSM is fundamental to increase sensibly
the rank of the correct answer.

Also interesting is fig. 3 and fig. 4 where we take into consideration the length of
the target. It can be observed that the WSM guarantees the system to well perform with
long word targets, of great importance in the CSP phase.

3.1 Retrieving Useful Documents
The first goal of the answering process is to retrieve the documents that are better related
to the clue. This can be done thanks to the fundamental contribution of search engine’s
technology (GoogleTM was used in our testing). In order to increase the information
retrieved through the search engine the clues go through a reformulation/expansion
step. Each clue C = {t1t2...tn} generates two queries: Q1 =< t1 ∧ t2 ∧ ...tn > and
Q2 =< t1 ∨ t2 ∨ ...tn >. Non informative words are removed from the queries.

Fig. 5. WSM coverage. The coverage of the WSM in relation to the number of documents re-
trieved for each clue. The coverage increases very rapidly until about 30 documents. After this
limit, in order to increse the coverage we have to sensibly slow down the answering process.

5

A classic QA approach is to make use only of the document snippets in order to
stress time efficiency. Unfortunately the properties of the clues make this approach use-
less (the probability of finding the correct answer within a snippet has been experimen-
tally observed below 10%) and we decided for a full-document approach.

The interrogation of the search engine and the download the documents represent
two tasks that are extremely time consuming, absorbing easily over 90% of time in the
entire clue-answering process. Therefore we have implemented it in a highly parallel
manner: the WSM simultaneously downloads tens of documents adopting a strict time-
out for each http request (20 secs.) and using SE’s cached copies when necessary.

For each example of our test suite we have retrieved and downloaded a maximum
of 200 docs per clue (max. 30 docs with Q2). 615589 docs were downloaded in 44h
36m3. All the test sessions were subsequently made off-line using this web image.

3.2 Extracting and Ranking the Candidates
The process of generating a list of candidate answers given a collection of relevant
documents goes through two important steps. First, the documents are analysed by a
parser which produces as output plain ASCII text. Second, this text is passed to a list
generator that extracts the words of the correct length, eliminates doubles and produces
an unweighted candidate list. In order to increase the coverage, a list of compound
words (i.e., a sequence of adjacent words fulfilling the length requirement) is generated
from each document (compound words which occurs only once are omitted).

Both outputs are then passed to two submodules: a statistical filter, based on IR
techniques, and a morphological filter, based on machine learning and NLP techniques.
Both have been embedded in the WSM.

The candidates are ranked by merging together the information provided by the two
list filters. The score-probability associated to each word candidate w is given by

p(w,C) = c (sf -score(w,C) × mf -score(w,C)) (1)

where sf -score(w,C) is the score attributed to word w by the statistical filter,
mf -score(w,C) is the score provided by the morphological filter, c is the normalizing
factor that fulfills the probability requirement

∑n

i=0 p(wi, C) = 1.
In QA systems it is important to produce very high precision only in the very first

(3-5) answer candidates, since a human user will not look further down in the list.
For this reason NLP techniques are typically used to remove those answers that are

3 Bandwidth: 1Mb/s, effective ≈100KB/sec, avg. 230 docs/min, 167 docs/clue, 25.6KB/doc).

Table 2. Clue-Answering samples. The “easy” examples are usually those where the topic is
directly addressed. Instead, the “tough” ones are usually very general or ambiguous.

“Easy” clues for the WSM “Tough” clues for the WSM
≺Confina con l’Abruzzo: molise� ≺Documenti per minorenni: patentini�
1:molise 2:aquila 3:marche 4:umbria 1:necessari 2:richiesti 3:organismi
≺Mal d’orecchi: otite� ≺Il verbo di chi ha coraggio: lanciarsi�
1:otite 2:ictus 3:otiti 4:edemi 5:gocce 1:interiore 2:predicato 3:idealismo
≺Un film di Nanni Moretti: carodiario� ≺Larga e comoda: ampia�
1:palombella 2:portaborse 3:carodiario 1:bella 2:sella 3:barca 4:scala 5:valle
≺Il Giuseppe pittore di Barletta: denittis� ≺Una sciagura attraente: calamita�
1:leontine 2:molfetta 3:ritratto 4:denittis 1:passione 2:alcolico 3:fardello

6

Docs

List

Statistical Filter

List

DOCUMENT
RANKING

TF
SCORING

WORD-QUERY
DISTANCE
SCORING

IDF
SCORING

Clue

Fig. 6. Statistical Filter. A sketch of the in-
ternal architecture of the Statistical Filter.

POS
TAGGER

Clue

List

Morphological Filter

Docs

List

CLUE
TAGGING

DOCUMENTS
TAGGING

CLUE
CLASSIFIER

LIST
SCORING

Fig. 7. Morphological Filter. A sketch of the in-
ternal architecture of the Morphological Filter.

not likely correct. This answer selection policy is not well suited for clue-answering, a
more conservative approach is required because the lack of the correct answer makes
a greater damage than a low precision. The eq. 1 serves this goal: words that have low
scores will appear at the bottom of the list but will not be dropped.
3.3 The Statistical Filtering
This submodule makes use of three types of information: the query given as input to
the SE (Qn: the n-th reformulation of clue C), the documents provided by the search
engine (Di is the i-th document of the SE’s output) and a list of candidate answers
w extracted from the documents. An additional element is used, rank(Di, Q

n): the
document ranking, obtained using Google’s output. Finally, we attribute a global score
to each triple (w,Qn, Di) in the following way:

sf -score(w, Q
n) =

#docs
X

i=0

„

score(w, Qn, Di)

length(Di)
rank(Di, Q

n)

«

(2)

where length(Di) is the number of words in Di. The score of a word within a single
document is computed in a TF-IDF fashion. TF has been modified in order to take into
account the inner-document distance between the word and the query. As shown in
eq. 3, each occurrence of a word counts 1/dist(wk, Q,Di), whereas in normal TF each
occurrence counts equally.

score(w, Q, Di) = idf(w)
X

wk∈occ(w,Di)

1

dist(wk, Q, Di)
(3)

idf(w) is the classic inverse document frequency, which provides an immediate inter-
pretation of term specificity. For compound words we take the highest idf value of
the word components. occ(w,Di) represents all the occurrences of the word w in the
document Di. The distance between word wk and query Q is computed as a modified
version of the square-root-mean distance between wk and each term wQt

of the query,
suggested by [8]. The main bias of the original formula was to weight equally all the
words of the query without taking into account that some words are more informative
than others. As shown in eq. 4, we decided to overcome this problem by tuning the ex-
ponential factor of the square-root-mean distance using a normalized idf value of wQt

.
This increases the relevance of those answer candidates that are close to the more in-
formative terms in the query. This novel contribution has resulted experimentally more
effective for our goals.

dist(wk, Q, Di) =

q

P#terms ∈ Q
t=0 (dist(wk, wQt , Di))

idf(wQt
)

#terms ∈ Q (4)

dist(wk, wQt
, Di) denotes the minimum number of words that separate wk and an

occurance of the clue word wQt
in document Di. After a preliminary testing we decided

7

Fig. 8. Filtering perfomaces. The graphic represents the probability of finding the correct answer
in relation to the number of candidates that are taken into consideration.

to limit to 150 words the maximum word-word distance. A default penalty distance of
300 is assigned to those words that exceed this limit, as we assume that the semantic
link between two words is weaker.

This distance metric could be further improved (i.e. taking into account sentences,
paragraphs, titles, punctuations, etc.) but it already provides a very informative tool.

Other improvements could be obtained using a crossword-focused idf function (the
idf values used here were obtained through a non-focused crawling session) or making
use of the context in which each candidate appears. Figure 8 shows the contribution of
all the elements used within the statistical filter. In a non ranked list the probability of
finding the correct answer increases linearly with the number of candidates taken into
consideration. It is easy to observe in figure 8 how the performances increase shifting
from a basic filter to the full one which includes both the statistical and morphological
information.

3.4 The Morphological Filtering
The aim of this filter is to rank the candidates according to the morphological class they
belong to. For this reason we made use of a Part-of-Speech (PoS) tagger, which asso-
ciates a morphological class to each word of a sentence. Figure 7 shows the information
flow of the morphological filter.

The PoS tagger is used to tagged both the clue and each document related to it.
Afterwards, the clue is processed by a multi-class classifier, which returns a weighted
vector of the possible morphological classes the solution can belong to. Finally, for each
word of the candidate list its morphological score is calculated by:

mf -score(w, C) =

#tags
X

i=0

p(tagi|w)score(tagi, C) (5)

p(tagi|w) is the information provided by the PoS-Tagger, score(tagi, C) is computed
using the output of the classifier with the addition of a spread factor in order to enhance
the impact of the classification.

With the attempt to maintain a strong language-independence we chose an auto-
matic trainable PoS tagger, called TreeTagger [12], which is an extension of a basic
Markov Model tagger. The TreeTager is based on two parts: a Lexicon and a Decision
tree. Each word is first tagged using the Lexicon, which makes use also of a Prefix tree

8

and a Suffix tree. This two trees are binary decision trees, generated by the training ex-
amples, which infer the possible tag of a word by examining, respectively, its beginning
or ending. Finally, a binary decision tree is used. This takes into account the tags of the
k preceding words and returns a vector of the probable tags, based on the examples seen
in the training corpus. We used 23 different classes to distinguish: articles, nouns and
adjectives, verbs, adverbs, particles, interlocutory words, numbers, punctuation marks,
abbreviations and others. A detailed list is given in table 3. At first, the TreeTagger was
trained using an automatically extracted corpus form TUT [13]. The tagger was then
used to tag a new corpus based on some CWDB’s clues and documents from the web.
This new corpus was corrected and added to the first one. Finally, the TreeTagger was
retrained, obtaining an accuracy of about 93% on a cross validation test set.

The clue classifier was built using multi-class Kernel-based Vector Machine [11]
[10]. First, a training set was created by extracting about 7000 clue-target pairs from
the CWDB. Each clue was tagged by the TreeTagger and a feature vector x̄ ∈ R

n

was then automatically generated for each example. The features extracted from each
clue-answer pair were: the length of the target, the number of words in the clue, the
number of capital letters in the clue, a set of the 250 most frequent clue-words and
the probability tag vector associated to each word of the clue. Finally, a target class
i ∈ {1, . . . , k} was associated to each example. We made use of 21 different target
classes: almost all the morphological ones with the addition of name initials (IP) and
non-semantic words (NS). A detailed list is shown in table 5.

The classifier learns a linear function H : X → Y of the type H(x̄,M) = 〈M,Φ(x̄)〉,
where

f(x̄) = argmax
i∈{1,...,k}

Hi(x̄, M) (6)

is the predicted class and the i-th entry of the vector ȳ = H(x̄,M) corresponds to
the score given to the class i. The goal is to minimize the empirical risk over all the
training examples R(f) =

∑
t ∆(yt, f(x̄t)) where ∆(yt, ŷt) is the loss associated

to the predicted class ŷt = f(x̄t). ∆(yt, ŷt) = 0 if yt = ŷt. Instead, ∆(yt, ŷt) =
pos loss + c

∑
j:(yj−yt)>0 (yj − yt) if yt 6= ŷt, where pos loss is the distance in posi-

tions of yt from the first value ŷt and c is a normalization parameter.

Table 3. Morphological classes. This is the full list of the morphological classes used in our PoS
Tagger. The choice was to stress information relevant for finding the solution of a clue.

class description class description
MS Noun or Adj. or Pron., masc. sing. AFP Article, feminine plural
FS Noun or Adj. or Pron., fem. sing. AV Adverb
MP Noun or Adj. or Pron., masc. pl. PART Particle
FP Noun or Adj. or Pron., fem. pl. NUM Number
NP Proper Noun EP Interlocutory words
VS Verb, cong. singular ABBR Abbreviation
VP Verb, cong. plural PC Compound Words
VI Verb, base form SCRIPT Script words in html doc.
VOTHER Verb, other SENT Punctuation a the end of a sentence
AMS Article, masculine singular SENT2 Punctuation, all the others
AFS Article, feminine singular OTHER all the rest
AMP Article, masculine plural

9

Table 4. Coverage. Here is
reported the probability of
finding the correct answer
in the first k positions.

Position Coverage
1st pos 54.30%
2nd pos 73.01%
3rd pos 82.67%
4th pos 87.77%
5th pos 91.38%
6th pos 93.60%

Table 5. Class accuracy. For each class it is given the percentage
of examples inside the training set and the accuracy of the classi-
fier.

class P ex. acc. class P ex. acc. class P ex. acc.
MS 24.8% 50.2% IP 2.9% 92.2% NUM 0.8% 38.7%
NP 18.7% 68.2% VI 2.6% 67.4% AMS 0.4% 21.4%
FS 13.7% 32.4% PC 2.3% 34.6% VS 0.2% 0.0%
MP 11.2% 65.1% PART 1.3% 25.5% AMP 0.1% 20.0%
NS 9.0% 84.6% AV 1.2% 16.3% AFP 0.1% 33.3%
FP 5.2% 19.0% EP 1.0% 5.0% AFS 0.1% 33.3%
ABBR 3.7% 67.2% OTHR 0.9% 12.5% VP 0.1% 0.0%

Using a cross validation test over the training set described above, we obtain with a
linear kernel an accuracy of 54.30% on the predicted class. The accuracy is not very
high as there are many clues where it is hard, also for humans, to determine the exact
class of the solution. This ambiguity occurs mainly between the classes of these two
subset: {MS,FS,NP} and {MP,FP} 4. For the latter reason and taking into account that
no candidate is pruned but just re-weighted, we considered as a more significant value
the coverage of the classifier on the first n predicted classes. As shown in table 4, the
coverage increases very rapidly and it is equivalent to 91.38% if we look over the first
5 predicted classes. Thus, as the number of different target classes is large, this can be
considered a very good result. In fact, the use of the output of the clue classifier causes
an increment in the WSM performance.

Table 5 shows the occurrence of each class in the data set, which should be similar to
the one in the whole CWDB. No re-balancing has been made, as the learning algorithm,
during each loop, process the “most violated” constraint using a cutting plane method.
It can be seen also that there are several classes whose accuracy is high, such as IP, NS,
VI, NP and MP.

In order to better exploit the morphological classifier, a submodule (NI) which gen-
erates name initials5 was implemented.

3.5 Estimating a Confidence on the Lists

After generating a candidate, each module has to estimate the probability that this list
contains the correct answer. This information is then processed by the merger, in order
to correctly join the lists produced by the modules.

The confidence estimator of the Web Search Module has been implemented using a
standard MLP neural network. This was trained on a set of 2000 candidate lists, using
a cross validation set of 500 examples. The main features used for the description of a
candidate list example include: the length of the query, the idf values of its words, the
length of the list and the scores of the candidates. The output target was set to 1 when
the list contained the correct answer, 0 when this was absent.

4 For example, in some clues is not possible to determine the gender of the solution, such as
≺Ricopre i vialetti: ghiaia, FS� (≺It can cover a drive: gravel�) or ≺Si cambiano ad ogni
portata: piatti, MP� (≺You use different ones at each course: plates�).

5 E.g., ≺Iniziali di Celentano: ac, IP� (≺Name initials of Celentano: ac�).

10

4 The Other Modules.
Four different typologies of additional modules are present in WebCrow’s design, namely
the data-base, the rule-based, the implicit and the dictionary module.

The Data-Base Module. Three different DB-based modules have been implemented
in order to exploit the 42973 clue-answer pairs provided by our crosswords database:
CWDB-EXACT, that checks for exact clue correspondences in the clue-entries, CWDB-
PARTIAL, that checks for partial matches by computing clue-similarity scores, CWDB-
DICTIO, that simply returns the full list of words with the correct length.

The Rule-Based Module. Italian crosswords frequently contain answers that have
no semantic relation with their clues, like ≺Ai confini del mondo: mo�, but that are
cryptically hidden inside the clue itself. This especially occurs in two-letter and three-
letter-answers. With these clues the Web does not provide any help. Therefore we
have implemented a rule-based module (RBM), containing eighteen rules for two-letter
words and five rules for the three-letter case.

The Implicit Module. The implicit module attributes scores to sequences of let-
ters. It is used in two ways. First, to help the grid-filling algorithm when there are no
candidate words left for a certain slot during the solving process and as most probable
sequence of characters. Second, as a list filter to rank the terms present in the dictionar-
ies. To do so we used tetra-grams probabilities that were computed from the CWDB.

The Dictionary Module. Dictionaries are used to increment the global coverage of
the clue-answering. Two Italian dictionaries were used. The first one containing 127738
word lemmas, and the second one containing 296971 word forms. The output is given
by the list of terms with the correct length, ranked by the implicit module.

5 Merging the Lists and Filling the Puzzle
The grid-filling phase requires to have unique lists for each slot. Hence, the first step is
to merge all the lists produced by the different modules into one. The merger module
attributes a probability p(w) to all the words w that appear in the collection of candidate
lists: p(w) = c

∑m

i=0 (pi(w) × confi) where m is the number of modules used, confi is
the confidence evaluation of module i, pi(w) is the probability score given by module i
and c is a normalizing factor.

Crossword solving can be successfully formalized as a Probabilistic-CSP prob-
lem [3]. The slots of the puzzle represent the set of variables, the lists of candidates
provide the domain of legal values for the variables. The goal is to assign a word to
each slot in order to maximize the similarity between the final configuration and the
target (defined by the crosswords designer). To compute this similarity we adopted the
maximum probability function6. We search among the various solutions for the one that
maximizes:

∏n

i=1 pxi
(vi) where pxi

(vi) is the probability that the value vi is assigned
to the variable xi in the target configuration.

Finding the maximum probability solution is an NP-complete problem that can be
faced using heuristic search techniques as A∗. Due to the time restrictions and to the
complexity of the problem we chose as a solving algorithm a CSP version of WA∗ [6]
with cost function: f(X) = γ(d)(g(X) + wh(X)) where w is the weighting constant

6 A more efficient metric has been proposed in [3], the maximum expected overlap function. We
will include this feature in our further work.

11

Fig. 9. WebCrow’s performance on the five subsets. The performance over the full test set is of
68.8% correct words and 79.9% correct letters. Allowing an extended time limit of 45 minutes
and using more documents, the system’s performances increase by a 7% in average.

that makes A∗ more greedy, as in classic WA∗, and γ(d) represents an additional score,
based on the number of assigned values d that makes the algorithm more depth-first,
which is preferable in a CSP framework. This depth score speeds up the grid-filling but
it also causes non-admissibility.

6 Experimental Results
The whole crosswords collection has been partitioned in five subsets. The first two
belong to La Settimana Enigmistica, S1

ord containing examples of ordinary difficulty
(mainly taken from the cover pages of the magazine) and S1

dif composed by cross-
words especially designed for skilled cruciverbalists. An other couple belong to La
Repubblica, S2

new and S2
old respectively containing crosswords that were published in

2004 and in 2001-2003. Finally, S3 is a miscellaneous of examples from crossword-
specialized web sites.

Sixty crosswords of the test set (3685 clues, avg. 61.4 each) were randomly ex-
tracted from these subsets in order to form the experimental test suite: T 1

ord (15 exam-
ples), T 1

dif (10 exs.), T 2
new (15 exs.), T 2

old (10 exs.) and T 3 (10 exs.).
The quality of the clue-answering provided by the Web Search Module can be ob-

served in figure 5. By increasing the number of documents used, the coverage of the
system can be augmented sensibly reaching 74,5% with 100 documents. The coverage
is higher for the examples belonging to T 1

ord (up to 81,7%), T 1
dif (up to 77,4%) and T 3

(up to 80,6%). The clues from La Repubblica are objectively more difficult to answer,
having a coverage of nearly 69%.

The coverage of the WSM’s lists grows sensibly with the first increments in the
number of retrieved documents. We found that an optimal balance in the trade off be-
tween precision, coverage and time cost is reached using 30 docs7. We took this as
the standard quantity of sources to be used in the experiments because it allows We-
bCrow to fulfill the time limit of 15 minutes. If a complete solution is not found by the
grid-filling algorithm within this time limit the best partial assignment is returned.

Figure 9 reports WebCrow’s performance on each example. On T 1
ord the results were

quite impressive: the average number of targets in first position was just above 40% and
the CSP module raised this to 80.0% (90.1% correct letters). With T 1

dif WebCrow was
7 In our testing it took an avg. of 8 minutes to answer all the clues of a crossword using 30 docs.

12

able to fill correctly 67.6% of the slots (81.2% letters). On T 2
new WebCrow performs

with less accuracy averaging 62.9% (72% letters). On T 2
old, due to the constant refresh-

ing of Web’s information, the average number of correct words goes down to 61.3%
(72.9% letters). In T 3 WebCrow reached 69.1% words correct (82.1% letters).

7 Conclusions
The version of WebCrow that is discussed here is basic but it has already given very
promising results. WebCrow’s overall architecture allows to plug in several expert mod-
ules in order to increase the system’s performances. The web-search approach has
proved to be very consistent. We believe it could suite all those problems in which
semantics and interpretation play an important role

In our future work we believe that a robust NLP system could be of great impact
in the answering of the clues. This can be done by adding several other list filters:
stylistic, morpho-syntactical, lexical and logical. Moreover, we will improve the grid-
filling algorithm. With these additions we are confident that WebCrow can become a
strong Italian and multilingual crosswords solver.

References
1. Michael L. Littman, Greg A. Keim and Noam M. Shazeer: A probabilistic approach to solving

crossword puzzles. Journal of Artificial Intelligence. 134 (2002) 23–55
2. Greg A. Keim, Noam M. Shazeer and Michael L. Littman: PROVERB: the probabilistic cru-

civerbalist. Proc. AAAI ’99. (1999) 710–717
3. Noam M. Shazeer, Greg A. Keim and Michael L. Littman: Solving crosswords as probabilistic

contraint satisfaction. Proc. AAAI ’99. (1999) 156–152
4. Michael L. Littman: Review: computer language games. Journal of Computer and Games.

134 (2000) 396–404
5. M. L. Ginsberg, M. Frank, M. P. Halping and M.C. Torrance: Search lessons learned from

crossword puzzles. Proc. AAAI ’90. (1990) 210–215
6. I. Pohl: Heuristic search viewed as path finding in a graph. Journal of Artificial Intelligence.

1 (1970) 193–204
7. Matthew L. Ginsberg: Dynamic Backtracking. Journal of Artificial Intelligence Research. 1

(1993) 25–46
8. Cody Kwok, Oren Etzioni and Daniel S. Weld: Scaling question answering to the web. ACM

Trans. Inf. Syst. 19,3 (2001) 242–262
9. Ellen M. Voorhees and Dawn M. Tice: Overview of the TREC–9 Question Answering Track.

Proc. TREC-9. (2000)
10. Koby Crammer and Yoram Singer: On the algorithmic implementation of multiclass kernel–

based vector machines. Journal of Machine Learning Res. 2 (2002) 265—-292
11. Ioannis Tsochantaridis et al.: Support vector machine learning for interdependent and struc-

tured output spaces. Proc. ICML 04. (2004)
12. H. Schmid: Improvements in Part-of-speech Tagging with an Application to German. Proc.

EACL SIGDAT Workshop. (1995)
13. C. Bosco, V. Lombardo and D. Vassallo and L. Lesmo: Building a Treebank for Italian: a

Data–driven Annotation Schema. Pro. LREC. (2002)

